ar X iv : 0 81 0 . 50 75 v 1 [ m at h . FA ] 2 8 O ct 2 00 8 L p Bernstein Estimates and Approximation by Spherical Basis Functions ∗ †
نویسندگان
چکیده
The purpose of this paper is to establish L error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit n-sphere. In particular, the Bernstein inequality estimates L Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the L norm of the function itself. An important step in its proof involves measuring the L stability of functions in the approximating space in terms of the l norm of the coefficients involved. As an application of the Bernstein inequality, we derive inverse theorems for SBF approximation in the L norm. Finally, we give a new characterization of Besov spaces on the n-sphere in terms of spaces of SBFs.
منابع مشابه
ar X iv : 0 81 1 . 28 54 v 1 [ m at h . FA ] 1 8 N ov 2 00 8 L p estimates for non smooth bilinear Littlewood - Paley square functions
L p estimates for non smooth bilinear Littlewood-Paley square functions on R. Abstract In this work, some non smooth bilinear analogues of linear Littlewood-Paley square functions on the real line are studied. Mainly we prove boundedness-properties in Lebesgue spaces for them. Let us consider the function φn satisfying c φn(ξ) = 1 [n,n+1] (ξ) and consider the bilinear operator Sn(f, g)(x) := R ...
متن کاملar X iv : 0 81 0 . 05 79 v 1 [ m at h . ST ] 3 O ct 2 00 8 Almost Sure Convergence of Extreme Order Statistics
Let M
متن کاملar X iv : 0 71 0 . 13 81 v 1 [ m at h . FA ] 6 O ct 2 00 7 On the symplectic phase space of KdV
We prove that the Birkhoff map Ω for KdV constructed on H 0 (T) can be interpolated between H 0 (T) and L20(T). In particular, the symplectic phase space H 1/2 0 (T) can be described in terms of Birkhoff coordinates.
متن کاملar X iv : 0 81 0 . 17 89 v 1 [ m at h . SP ] 1 0 O ct 2 00 8 SPECTRAL THEORY OF ELLIPTIC OPERATORS IN EXTERIOR DOMAINS
We consider various closed (and self-adjoint) extensions of elliptic differential expressions of the type A = P 06|α|,|β|6m(−1) Daα,β(x)D β , aα,β(·) ∈ C ∞(Ω), on smooth (bounded or unbounded) domains Ω in R with compact boundary ∂Ω. Using the concept of boundary triples and operator-valued Weyl–Titchmarsh functions, we prove various trace ideal properties of powers of resolvent differences of ...
متن کاملar X iv : 0 81 0 . 11 28 v 1 [ m at h . A P ] 7 O ct 2 00 8 Ground state solutions for the nonlinear
In this paper we prove the existence of a ground state solution for the nonlinear Klein-Gordon-Maxwell equations in the electrostatic case.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008